Светлана Драган о переходе в Эпоху Водолея с 21.12.2020. Какие перемены ждут всех нас?

21 вариант того, как может выглядеть ваша ДНК

Мы привыкли представлять себе ДНК в виде двойной спирали — но это лишь одно из множества ее обличий. С тех пор, как Уотсон и Крик опубликовали свою модель, в клетках человека нашли тройную и четверную спираль ДНК, а еще кресты, шпильки и другие варианты переплетения — некоторые проще нарисовать, чем описать словами.

Набросать идей

Уотсон и Крик не были единственными, кто корпел над трехмерной моделью ДНК. Они даже не были первыми. На обрывках биохимических данных можно было построить самые разные молекулярные формы, и вариантов было множество.

Условия задачи у всех были одинаковы. На начало 1953 года уже было понятно, как устроен нуклеотид:

  • остаток фосфорной кислоты,
  • сахар,
  • одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц).

Еще было известно, что азотистые основания разбросаны по цепи не случайно: в любой молекуле ДНК суммарное количество аденинов и гуанинов строго равнялось количеству тиминов и цитозинов. Кроме того, на всех рентгеновских снимках Розалинд Франклин и Рэймонда Гослинга, независимо от того, какой участок ДНК на них был запечатлен, сама нить имела одну и ту же толщину. Это означало, что форма остается неизменной при любой последовательности нуклеотидов.

Из этих вводных Лайнус Полинг и Роберт Кори собрали свою модель — тройную спираль, ощетинившуюся со всех сторон азотистыми основаниями (фосфату и сахару биохимики отвели роль внутреннего стержня). Эта конструкция выглядела неустойчивой: было непонятно, почему отрицательно заряженные фосфатные группы в центре спирали не отталкиваются друг от друга.


Структура ДНК по версии Полинга и Кори

Эту проблему решил Брюс Фрезер, вывернув конструкцию наизнанку: в его варианте три нити смотрели фосфатами наружу. Азотистые основания были обращены внутрь, однако Фрезер так и не смог объяснить, по какому принципу они соединены.
Модель Уотсона и Крика с закрученной вправо двойной спиралью оказалась самой устойчивой. Как и Фрезер, ученые расположили фосфаты снаружи, а азотистые основания — внутри. Был в этой модели и четкий принцип их противопоставления: А на одной цепи всегда соединялся с Т на другой, а Г — с Ц. Это объясняло, почему толщина конструкции стабильна — пары А-Т и Г-Ц примерно одинакового размера.


Карандашный набросок структуры ДНК, сделанный Фрэнсисом Криком

Потом были и другие попытки пересобрать ДНК в новую форму. Голландский биохимик Карст Хугстин, например, заметил, что можно соединить те же самые пары нуклеотидов другими гранями, — так спираль тоже оставалась стабильной, но получалась тоньше. Другие авторы изображали ДНК в виде спирали с чередующимися правым и левым поворотами, или даже в виде двух двойных спиралей, которые образуют единую четверку. И хотя существование Уотсон-Криковской двойной спирали с тех пор много раз подтвердилось, в XXI веке продолжают размышлять о том, какие формы принимает нить ДНК внутри клетки, где ее разглядеть намного сложнее, чем в пробирке. Правда, ни одна из альтернативных идей до сих пор не оказалась достаточно хороша, чтобы отказаться от классической правозакрученной двойной спирали.
Уотсон и Крик сделали нечто большее, чем просто разрешили споры о форме ДНК. Их модель сразу же объяснила, как эта форма работает: взаимно однозначное соответствие делает каждую нить шаблоном для другой. Имея только одну из цепей, по ней всегда можно восстановить вторую — на этот принцип опираются все современные модели передачи генетической информации.

Тем не менее, большинство «отвергнутых» идей в чем-то оказались верны. За почти 70 лет пристального разглядывания ДНК в ней удалось обнаружить практически все возможные виды соединения оснований, другие спирали и даже левый поворот.

Свернуть не туда

Уже сама по себе двойная спираль может быть устроена по-разному. Это заметила еще Розалинд Франклин, хотя и не предполагала, что перед ней спираль, да еще и двойная. В обычных условиях, напоминающих внутриклеточные, ДНК на снимках биолога имела «рыхлую» форму, которую Франклин назвала В-ДНК. Но если влажность в пробирке опускалась ниже 75 процентов, получалась А-ДНК, пошире и поплотнее.


А (слева) и В (справа) формы ДНК, какими их увидела Розалинд Франклин

Как выяснилось потом, А-ДНК действительно закручена туже: в ней на виток спирали уходит 10 нуклеотидов, а не 11, как в В-ДНК. И расположены они не перпендикулярно оси симметрии спирали, а под углом: если в В-ДНК нуклеотиды обычно изображают горизонтальными черточками, в А-ДНК их следовало бы рисовать косыми.

Уотсон и Крик выбрали В-ДНК в качестве основы для своей модели и не прогадали. Позже оказалось, что В-вариант действительно встречается в клетке гораздо чаще, и сейчас его считают основной формой существования ДНК, а все отклонения часто обозначают общим термином «не-В ДНК».

Более того, реальная двойная спираль почти никогда не соответствует своей идиллической модели. В живых системах В-ДНК, как правило, скручена чуть сильнее, чем предсказывали Уотсон и Крик, и среднее число нуклеотидов на виток спирали в ней — не 10 и не 11, а около 10,5. Кроме того, отдельные пары нуклеотидов постоянно отклоняются от положенной «горизонтали» (это называют «пропеллерным поворотом») поэтому спираль никогда не бывает абсолютно гладкой и ровной — то тут, то там по ее бокам торчат шероховатости: концы нуклеотидов под разными углами.


«Пропеллерный» поворот нуклеотидов в В-ДНК

Позже оказалось, что витки спирали могут не только лежать туже или расслабленнее, но и вовсе закручиваться против часовой стрелки (например, влево закручена спираль башни «Эволюция» в Москва-сити, явно символизирующая нить ДНК). По странному стечению обстоятельств, именно такую ДНК увидели в 1979 году, когда появилась наконец возможность рассмотреть нуклеиновые кислоты с высоким разрешением. Это все еще была двойная спираль, но совсем другой формы: 12 нуклеотидов на виток, еще тоньше, чем В-ДНК и закрученная не вправо, а влево. Торчащие ее на поверхности фосфатные группы образовывали не плавную спираль, а зигзаг, поэтому новый вариант назвали Z-формой.

А-ДНК (слева), B-ДНК (по центру), Z-ДНК (справа)

Это, конечно, не означало, что Уотсон-Криковская модель неверна. Z-форму удалось получить при достаточно экзотических условиях — в растворе с высокой концентрацией солей. И в клетке она тоже получается из В-ДНК лишь при определенных обстоятельствах: например, когда «напряжение» на цепи слишком высоко и его необходимо сбросить. Напряжение появляется из-за чрезмерного скручивания: нити ДНК и так завернуты друг относительно друга, но образованная ими двойная спираль накручивается на какой-нибудь белок (например, гистон), возникает так называемая суперспирализация. Переход в Z-форму помогает сбросить напряжение и развернуть лишние витки — а это, в свою очередь, важно, чтобы с ДНК могли связываться новые белки, например, полимераза при транскрипции.
Поэтому ДНК часто принимает Z-форму при транскрипции генов. Более того, чем больше при этом Z-ДНК, тем активнее идет транскрипция. Гистоны с Z-ДНК связаться не могут, поэтому полимеразе никто не мешает заниматься своим делом. И этим, кстати говоря, активно пользуются опухолевые клетки, у которых левозакрученная спираль вовремя возникает перед нужными им генами.

Потом нашлись и другие формы двойной спирали. В зависимости от влажности, содержания солей и последовательности нуклеотидов в конкретном участке, ДНК может еще сильнее удлиняться (Е-ДНК) или сжиматься (C- и D-ДНК), включать в себя ионы металлов (М-ДНК) или вытягиваться так, что вместо азотистых оснований в центре спирали оказываются фосфатные группы (S-ДНК). А после того, как в список добавились другие типы внутриклеточной ДНК, вроде ядерной N-ДНК и рекомбинантной R-ДНК (которые, впрочем, попали в этот список не из-за своей формы, а положения в клетке или происхождения), в английском алфавите для вариантов ДНК практически закончились буквы. Тому, кто решит открыть еще какую-нибудь неканоническую форму, придется выбирать из пяти свободных: F, Q, U, V, и Y.

Алфавитный перечень форм ДНК

  • A-ДНК — двухцепочечная, чуть толще, чем В.
  • B-ДНК — та, которую построили Уотсон и Крик.
  • C-ДНК — двухцепочечная, 9,3 нуклеотида на виток.
  • D-ДНК — двухцепочечная, узкая: 8 нуклеотидов на виток, содержит много тиминов.
  • E-ДНК — двухцепочечная, еще уже: 15 нуклеотидов на два витка.
  • G-ДНК — четверная спираль с гуаниновыми тетрадами.
  • H-ДНК — тройная спираль.
  • I-ДНК — две двойные спирали, которые держатся вместе притяжением своих цитозинов.
  • J-ДНК — еще одна тройная спираль, которую образуют повторы АЦ.
  • K-ДНК — ДНК трипаносом, особенно богатая аденинами.
  • L-ДНК — ДНК, в основе которой лежит L-дезоксирибоза (а не D-, как обычно).
  • M-ДНК — В-ДНК в комплексе с двухвалентными металлами.
  • N-ДНК — ядерная ДНК.
  • O-ДНК — точка начала удвоения ДНК у бактериофага λ.
  • P-ДНК — тройная спираль Полинга и Кори.
  • R-ДНК — рекомбинатная ДНК (полученная встраиванием чужеродного фрагмента).
  • S-ДНК — двухцепочечная, вытянута в 1,6 раз сильнее, чем В-форма.
  • T-ДНК — похожа на D-форму, встречается у бактериофага Т2.
  • W-ДНК — синоним Z-ДНК.
  • X-ДНК — двухцепочечная спираль, которую образуют повторы АТ.
  • Z-ДНК — двухцепочечная левозакрученная.

Попасть в переплет

Помимо всевозможных форм двойной спирали и способов ее плетения, ДНК иногда распадается на отдельные нити, которые образуют в шпильки, кресты и другие двуцепочечные фигуры. Случается и так, что уже существующая двойная спираль обрастает новыми соседями.

В 1985 году выяснилось, что Полинг и Кори тридцать лет назад были правы: тройная спираль ДНК (H-ДНК) существует. Однако устроена она совсем не так, как они предполагали. В настоящей тройной спирали две цепи соединяются стандартным, Уотсон-Криковским способом, а третья примыкает к ним сбоку, ложась в большую бороздку между цепями. При этом азотистые основания третьей, дополнительной нити соединяются с основными парами не классическим способом, а как бы сбоку — теми самыми связями, которые предсказывал Карст Хугстин. Он тоже, в некотором роде, оказался прав.

Тройная спираль, как и многие альтернативные формы ДНК, тоже возникает в ответ на суперспирализацию цепи. Однако, в отличие от Z-формы, она не поддерживает транскрипцию, а наоборот, ей препятствует. РНК-полимераза, которая привычно расплетает две нити перед собой, не всегда справляется с тем, чтобы разделить триплекс. Поэтому если в гене или его регуляторных областях образуется тройная спираль, он работает хуже прочих.


Варианты образования тройной спирали. Уотсон-Криковские пары обозначены черным, добавочный третий нуклеотид выделен цветом

Бывает и так, что соединяются не две и не три, а сразу четыре цепи ДНК. Чтобы это произошло, в одном месте должны встретиться четыре гуаниновых нуклеотида — и неважно, находятся они на двух цепях одной нити или на четырех разных нитях, не связанных друг с другом. Каждый гуанин образует неклассическую, хугстиновскую пару с двумя соседями, а все вместе они создают квадратную гуаниновую тетраду. Если рядом с ними находятся другие гуанины, способные создать квадрат, то из них складывается стэк — стопка, которая удерживает рядом четыре цепи ДНК.

Гуаниновая тетрада (сверху) и варианты расположения цепей в квадруплексе (снизу)

Все 30 лет, что прошли с момента открытия квадруплексов, количество процессов, в которых они так или иначе замешаны, растет. Известно уже больше двух сотен белков, которые могут избирательно распознавать гуаниновые тетрады — вероятно, последние выполняют роль своего рода генетической разметки, очередного способа регулировать упаковку и транскрипцию генов. Например, они часто встречаются в промоторах (регуляторных участках, с которых начинается транскрипция) разных генов. Совсем недавно ученым даже удалось отличить разные типы рака груди через наборы квадруплексов — от них, в свою очередь, зависело, какие гены в опухолевых клетках были гиперактивны.

Чем дальше мы вглядываемся в молекулу ДНК, тем больше замечаем отклонений от давно привычной модели. Двойная спираль — не единственная и не окончательная структура ДНК, а лишь одна (пусть и самая частая) из поз, которую та принимает в непрерывном танце. Повинуясь велению нуклеотидной последовательности, нить ДНК сжимается и разжимается, изгибается, закручивается и принимает бесконечное число (прекрасных) форм. Ни одна из них — не окончательная: альтернативные структуры ДНК переходят друг в друга, конкурируют с В-формой и между собой, подчиняются сигналам клеточных белков и сами направляют их работу.

Найти и возглавить

Неканонические формы ДНК, при всем своем разнообразии, не возникают в случайных местах. Устойчивость им придает определенный набор нуклеотидов в их составе, поэтому и появляются они лишь в тех участках цепи, где для них есть «удобная» последовательность.

Так, например, в ДНК есть определенные участки, которые особенно охотно сворачиваются в зигзаг. Это места, где чередуются пары Г-Ц: после левого поворота в них каждый второй нуклеотид принимает «неправильную» форму, отсюда и ломаный профиль всей Z-формы. Это означает, что последовательности, склонные принимать Z-форму, можно найти прямо в тексте — если видите ГЦГЦГЦГЦГЦГЦ, то вряд ли прогадаете. Так в одной работе, например, насчитали 391 такой участок в человеческом геноме.

Места, в которых может образоваться тройная спираль, тоже можно узнать по характерной последовательности нуклеотидов. Третья цепь присоединяется либо по принципу комплементарности — то есть к паре Г-Ц добавляется еще один Г, образуя Г-Ц*Г — либо «к своему» — и получается Г*Г-Ц. Поэтому часто такая конструкция возникает в тех местах ДНК, где подряд идет несколько одинаковых (например, ГГГГГ) или химически близких (АГГААГ) нуклеотидов и где они образуют палиндромные (зеркальные) повторы.

Точно также по тексту ДНК можно предсказать и появление квадруплексов. По результатам только одного секвенирования (собственно, прямого перевода ДНК в буквы), в геноме человека их нашлось более 700 тысяч. Не все они, вероятно, встречаются in vivo — для этого соответствующем нитям ДНК нужно оказаться рядом в одной точке сложно устроенного клеточного ядра — однако это может означать, что четырехспиральным структурам отведена какая-то специфическая роль в жизни клетки.

Далеко не всегда образование альтернативных форм ДНК идет клетке на пользу: большинство из них куда менее прочны, чем обычная В-ДНК, и гораздо чаще рвутся. Поэтому последовательности, которые склонны образовывать не-В формы, становятся участками генетической нестабильности и повышенного мутагенеза. Одни исследователи видят в этом двигатель эволюции — если такие участки появляются в генах, связанных с развитием организма. Другие же винят альтернативные формы ДНК во всех видах болезней, связанных со случайными мутациями и перестановками в геноме — от опухолей до шизофрении и аутизма.

Получается, что ДНК содержит не только информацию о строении клеточных белков и РНК, но и о том, какие формы эта информация может принимать, помимо Уотсон-Криковского стандарта. А уже от этих форм, в свою очередь, зависит то, что с этой информацией произойдет: сможет ли клетка ее реализовать или ген, будет вечно молчать, а то и вовсе сломается, породив какие-то дополнительные мутации.

Вероятно, мы научимся однажды вмешиваться в этот процесс — можно было бы, например, построить цепь нуклеотидов, которая имитировала бы третью цепь в спирали и «подсунуть» ее в нужное время в нужном месте, чтобы заблокировать работу какого-нибудь нежелательного гена в клетке. Были даже более смелые предложения — использовать тройную спираль для прицельного редактирования генома: ввести в клетку нуклеотид, который сможет образовать с целевым участком ДНК тройную спираль и побудить систему репарации заменить этот участок на «здоровый» вариант с другой хромосомы.

А пока мы этому только учимся, остается признать структуру ДНК еще одним видом информации — помимо генетической (нуклеотидного «текста») и эпигенетической (доступности генов для считывания) — который несет в себе наш геном. И нам еще предстоит научиться с ним работать, влияя через форму на содержание, или наоборот.

Джордж Кавассилас. Наш путь домой

Будущее планеты зависит от того, сколько времени дети проводят на природе

Сегодня наша планета переживает далеко не самые лучшие времена. Ее поверхность переполняется мусором, температура воздуха постоянно повышается, ледники тают, а уровень Мирового океана становится все выше. Да уж, если события будут идти тем же чередом, человечеству несдобровать. Именно поэтому каждому из нас стоит начать бережнее обращаться с природой — первым делом, можно просто перестать выбрасывать мусор на землю. Но, что главнее всего, бережному обращению с природой важно обучить подрастающее поколение. А для этого, по словам ученых, важно укрепить их «связь с природой», позволяя как можно чаще ходить в походы с ночевкой, рыбалку и прочие мероприятия на открытом воздухе. При этом важно, чтобы дети имели возможность оставаться с природой наедине. Контроль со стороны взрослых определенно нужен, но излишнее вмешательство в этом деле ни к чему. Все эти выводы были сделаны в рамках исследования, проведенного учеными из американского штата Северная Каролина.

Будущее планеты Земля

Результаты научной работы были опубликованы в научном издании Science Alert. В ее рамках исследователи провели опрос среди 1285 детей из Северной Каролины в возрасте от 9 до 12 лет. Ученых интересовало то, насколько часто дети бывают на природе, чем они там занимаются и что думают о состоянии окружающей среды в целом. По словам одного из авторов научной работы Кэтрин Стивенсон (Kathryn Stevenson), детям, которые часто бывают на природе, всегда есть чем там заняться. Рыбалка, охота, сбор съедобных ягод и грибов — все это относится к активному отдыху. Однако участники опроса, которые выбирали более уединенные занятия на природе вроде той же рыбалки, выразили более серьезную обеспокоенность текущим состоянием окружающей среды.

Одно из преимуществ частного пребывания на природе, которое мы подчеркиваем, заключается в том, что дети, у которых есть сильная связь с природой, с большей вероятностью захотят заботиться об окружающей среде в будущем, — объяснила Кэтрин Стивенсон.

Стоит отметить, что результаты исследования не говорят о том, что детей можно оставлять без присмотра. Их действия очень важно контролировать, потому что по своей неопытности они могут устроить пожар, нарваться на опасных животных, съесть ядовитые растения и попасть во многие другие неприятности. Подрастающее поколение важно знакомить с окружающей средой, ведь, как выразились ученые, «сегодня они больше разбираются в разновидностях покемонов, а не в видах животных и растений». При всем этом, детям необходимо давать время на пребывание наедине с природой.

Ученые считают, что рыбалка и прочие занятия на открытом воздухе улучшают «единение с природой»

То, что длительное пребывание на природе приучает людей заботе о ней, было также доказано в ходе научной работы, результаты которой были опубликованы в журнале The Wildlife Society. Если верить статистике, то люди, которые выбрали связанную с природой карьеру, относятся к окружающей среде с большей заботой, чем все остальные. Можно подумать, что с природой связаны только карьеры биолога, лесника, и так далее. Но ярыми защитниками природы являются и многие рыбаки с охотниками. Ведь большинство из них помогают поддерживать равновесие популяций в животном мире, сокращая численность видов, которые представляют опасность для вымирающих животных.

Польза прогулок на природе

Вообще, в пребывании на природе ученые видят только плюсы. В начале 2020 года моя коллега Любовь Соковикова рассказывала о том, что даже десять минут пребывания на чистом воздухе могут заметно снизить уровень тревоги и беспокойства. Исследование показало, что если человеку удается пребывать на природе по 20-30 минут в день как минимум три раза в неделю, в их крови заметно уменьшается уровень кортизола, более известного как гормон стресса.

Но, к сожалению, при частом пребывании на природе многие люди забывают об экологии и выбрасывают мусор прямо на растущую траву. В конечном итоге получается, что парки и леса загрязняются пластиковыми бутылками, пакетами и прочим мусором, который сможет полностью разложиться только спустя тысячу лет. Примечательно, что человечество начало вредить природе уже давно — у ученых есть свидетельства того, что вредительством занимались даже наши далекие предки.

Астрономы нашли самую быструю звезду Млечного Пути

Астрономы обнаружили звезду, которая находится на минимальном среднем расстоянии от центральной черной дыры Млечного Пути, сообщается в журнале The Astrophysical Journal. Кроме того, им удалось найти и другого рекордсмена — самое быстро движущееся светило, чья скорость составляет восемь процентов от скорости света.

В центре Млечного Пути находится сверхмассивная черная дыра Стрелец A*, которая находится на расстоянии 26 тысяч световых лет от Земли. Она окружена горячим облаком газа, которое излучает в радиодиапазоне, а также небольшой группой тусклых S-звезд, которые вращаются вокруг нее по относительно тесным орбитам. Ранее ученые нашли несколько десятков таких объектов, включая S62, которая совершает один оборот вокруг центральной черной дыры за 9,9 лет и до сих пор считалась самым короткопериодичным светилом вокруг центральной черной дыры. Теперь же астрономам удалось обнаружить нового рекордсмена, чей орбитальный период почти на два года меньше.

Флориан Пайскер (Florian Peißker) из Института физики Кельнского университета вместе с коллегами анализировали данные, полученные инфракрасным спектрографом SINFONI и инструментом NACO, установленными на телескопе Very Large Telescope в Чили. Ученые обнаружили пять новых светил S-класса с массами от 2 до 2,8 масс Солнца, в их числе и звезду S4711, которая оказалась, в среднем, самой близкой к центральной черной дыре из известных сегодня (то есть имеет наименьшее среднее расстояние до Стрельца А* во время движения по орбите).

Наблюдения показали, что S4711 представляет собой объект спектрального класса B8/9-V с массой ровно вдвое больше солнечной. Она движется по орбите со скоростью 6,7 тысячи километров в секунду и совершает один оборот вокруг Стрельца A* примерно за 7,6 года, что делает ее звездой с самым коротким орбитальным периодом из известных вокруг нашей центральной черной дыры. S4711 движется по вытянутой эллиптической орбите, подходит к Стрельца A* на расстояние 144 астрономические единицы.

Также астрономы обнаружили и другого рекордсмена — звезду S4714, которая оказалась самой быстро движущейся звездой в Млечном Пути из открытых учеными. Она обращается вокруг Стрельца A* со скоростью 24 тысячи километров в секунду — это значит, что ей понадобилось бы примерно полдня, чтобы совершить один оборот вокруг Солнца по орбите Земли.

От редактора

В оригинальной версии заметки говорилось о том, что звезде понадобилось бы полторы секунды чтобы облететь вокруг Солнца по орбите Земли. Это ошибка — на самом деле это время, за которое звезда могла бы совершить один оборот вокруг Земли. Для того, чтобы совершить один оборот вокруг Солнца, ей понадобится примерно полдня. Приносим извинения читателям.

Открытие ученых позволяет лучше понять, какие процессы происходят в центральных областях нашей галактики. Авторы работы надеются, что в будущем им удастся обнаружить больше звезд на тесных орбитах вокруг черной дыры. Подобные объекты помогают проверить общую теорию относительности Эйнштейна, которая предсказывает, что орбита тела, движущегося в поле тяготения другого объекта, не замкнута, как в случае ньютоновского тяготения, а прецессирует в плоскости орбиты в направлении движения.

Недавно астрономам также удалось обнаружить самую быструю из известных на сегодняшний день гиперскоростную звезду главной последовательности, которая движется по галактике со скоростью почти 1755 километров в секунду, а также группу звезд, очень быстро вращающихся вокруг галактического центра.

Copy Protected by Chetan's WP-Copyprotect.
Рейтинг@Mail.ru Яндекс.Метрика Рейтинг SunHome.ru Твоя Йога